Supplementary Materials for ‘““Two-Dimensional Ice
Filling Based Channel Estimation in Densifying
MIMO Systems”

Zijian Zhang and Mingyao Cui

APPENDIX A
PROOF OF LEMMA 1

Given the channel model in (4) and h = vec (H), the
vectorized channel can be rewritten as
N N
hadi Zzgcr L)Ocr (ec,r)~ (2])

c=1r=1

Utilizing the commutative law of Kronecker product
(A®B)(C®D)=(AC) ® (BD), we have

(b* (90(:,7“) ®a (ec,r)) (bT (Soc,r) & aH (ec,r)) =
(0" () BT (per)) @ (a(fer)a (0e)) .

Then, the covariance of channel h can be derived as

(23), where (a) holds since the gains of different
C,R .. .

rays {ger}oly -1 are iid. with zero mean and nor-

malized power. (b) holds according to (22). (c¢) holds

since E(a(@cyr)aH (Gcm)) = E(a(GC/m/)aH (90/77,,)) and

E (b* (per) BT (goc,r)) =E (b* (per ) BT (Sﬁcly,,‘/)) hold for

(22)

any ¢,/ € {1,---,C} and r,v' € {1,--- , R}. (d) holds by
defining
B = NrE (b* (¢er) b (¢er) (25)
Sk = NgE (a(b.,)a” (0.,)) (26)
wherein ¢ and r can be arbitrarily selected from {1,---,C}

and {1,-- -, R}, respectively. One can find that, the matrix X
only depends on the steering vector b (¢) at the transmitter,
while the matrix 3y is only associated with the steering vector

a (0) at the receiver. Thus, X1 and X can be viewed as the
kernels that characterize the correlation among the transmitter
antennas and that among the receiver antennas, respectively.
This completes the proof.

APPENDIX B
PROOF OF LEMMA 2
Using some matrix techniques, the MI I(y;h)
can be rewritten as equation (24), where (a) holds
since det(I+AB) = det(I+BA) and E =
o?blkdiag (W{'Wy,--- , WEWgq); (b) holds according to

the property that (a @ B) C (a” @ D) = (aa’) @ (BCD)
if all dimensions meet the requirements of matrix
multiplications. To find more insights, we perform singular
value decomposition (SVD) on all {Wq}g‘?:1 and then
substitute all decomposition formulas W, = IL,Q, Y[ into
(24). It is evident that W, (waq)_l\Vf = II,IT7, thus
the MI I(y;h) can be rewritten as

I(y;h) =

log, det (I N N

L &
—QZ vivh) @ (IL,IY)) =y )
" 27

Observing (27), one can find that the MI I(y;h) in (7) only
relies on the orthogonal matrix IT, € CN*Nrr decomposed
from W, for all ¢ € {1,---,Q}, while it does not depend
on any £, or Y. It indicates that imposing W, = I1,; does

NTNR

Sh = E (hh#) @

c=1r=1

© NN S S (b )b

c=1r=1

©

) NpNRE (b* (90.r) b7 () @ E (a(0e) 2 (0,,)) L Br @ .

ZZE (6" (ger) @@ (b)) (b7 (ger) @ (B)))

T (o)) ®E (a(ber) @™ (6e,r))

(23)

(@)

I(y;h) = log, det (INRNT+

1
Lliew,

Q
1 .
© 1og, det <INRNT + > ((vivi) @ (Wo(Wiiw,)~'wiT)) 2h> :
q=1

Vi @ W blkdiag ((W{'W)

_17.,. ’(WgWQ)_l) [VT Q@ Wy, ’V*Q ®WQ]th>

(24)



not change the value of I(y;h). As a result, the orthogonality
constraint W W, = ITTI, = Igr can be safely introduced
into the problem formulation regarding I(y;h), which com-
pletes the proof.

APPENDIX C

PROOF OF MI INCREMENT I (§:41;h) — I(¥¢; h)

Using some matrix partition operations, the MI I(¥;11;h)
can be rewritten as

a 1 - _
I(Fes1:h) @ log, det (INRFQ + ;Xfil Z3hXt+1)
= log, det [

© log, det [

INRFt+ﬁ%X{f_2th 15{ z:hx,yrl }
iXt+1 Xt INRF + 5 XA B X4
INRFt+ X 2:h)(t *X YhXit1 :|
Nrr X Nrrt INRF+ Xt+12 Xi+1

1
= I(y¢;h) + log, det (INRF + (ﬂXﬁlﬁhXHl) , (28)

where (a) holds since according to Lemma 2 and (b) holds
by performing matrix triangularization. In partlcular DIV
given by 3y = X — EhXt(X SuX; +o INRFt) X > h,
which completes the proof.

APPENDIX D
PROOF OF LEMMA 3

The key idea of the proof is to rewrite the X,-related terms
in (10) as ¥, X; = Xy, [Xt,l,Xt] and

XH 5%, X X,

cHw o 3
XoEnXe = yusy %, XFS,X, (30)
Then, using the Schur’s matrix 1nver510n formula to expand
the term (X{{ YuX,+o INRFt) in (10), the following

recursion formula of can be obtained:

-1
Do =2 — T Xep (XA B X1 +0%Ing,) X3,
(€1}

When X;.; = +PU(;[l,---,Ngrr]), we have
EtXt+1 = Xt_,_ldiag ()\1 (Et) s ,)\NRF (Zt)) and

XF 2, X 41 = Pdiag (A (),
following equality holds:

)\NRF (3¢)). Thus, the

A (Z0)

_ H : T (24t

31 =U AU — Xt+1d1ag(W’ e
)\?VRF (Et> H

P/\NRF (Et) + 02 an

(32)

(2¢)

D
Given that XHldlag( Px\l(z(:,)-)s-g2 v PANJIV:F{?&HUQ XE =
AL (=) PA e (B0) "
Utdlag( 2N (2 =R P)\NRFR(FEt)-‘rG'Q , 0, ,0 )Ut and

Ngr N1 —NgrF
X = UtAthI , the equality in (13) can be derived from
(32), which completes the proof.

APPENDIX E
PROOF OF COROLLARY 1

According to Lemma 1 and equality (ABAH ) ®
(CDCH) = (A®C) (B®D) (A7 @ CH), the kernel X,
can be decomposed as

Yh= (UTATUTH) ® (UTATUTH)
=(Ur ® Ug) (Ar ® Ag) (Uf @ UY))

Uy Eigenvalue matrix
Nt Ngr

= Z Z O‘nTﬁnR (a'nT & b"R) ( An ® bH ) (33)

nr=1nr=1

Based on (33), one can verify without difficulty that (14) is
exactly the eigenvalue decomposition of 3y, which completes
the proof.

APPENDIX F
PROOF OF LEMMA 4

Nt
Given the new constraints v,1; € {\/ Pa;T} and

TLT:1
Witk € {Png by N ; for all & € {1,---, Ngr}, problem
(12) can be reorganlzed as

f (Vt+17 Wt+1)

max
Vit1, Wi

Nt

S.t. vigg € {ﬁaZT} ,

nT:1

Wit1k € {bnR}nR . Vke{l,---
Witl,k # Wt+1,k’7Vk # k’/,

where the objective function is given in (29), in which (a)
holds according to the definition in (15) and (b) holds by
utilizing the property to the property that (A ® B) (C® D) =
(AC) ® (BD). Note that, the constraint Wi, # Wi g/
for all ¥ # k' in (34) ensures the orthogonality of Wy 4.
Observing (34), one can find that our goal becomes finding
optimal indexes nr and {ng, k}k R that maximize the MI
increment f (viy1, Wig1). Assumlng that the optimal indexes
are expressed by noP" and {n?{’f{ NeEthe optimal precoder
and the optimal combiner are

5 NRF}7
(34)

_ * opt
= VPl and WP, = [bn%ﬁ, S - } ,

R NRpp
(35)

opt
Vi1

Nt Nr

(@) 1
f (Vir1, Wig) = log, det (INRF T3

TLT:1 TLR:1

Z Z >‘t>nT”ﬂR (V?Jrl ® Wg—il) (anT ® bnR) (anHT

obi) (vis wtm)

N+t Ngr

(b) 1

= 10g2 det (INRF + ? Z Z /\t "T,HR|anTvt+1’ Wt+1 nR nRWt+1> (29)
nr=1nr=1



respectively. Then, we have

opt \ % VP, np= noPt
all (vi¥y)" = { 0 T e’ (36a)
T opt \ NrF
b wert = [ Cnnr R € RO 36b
nR t+1 {O'JI\"]RF , else ) ( )

where e, ,, denotes an Ngyp-dimensional vector whose np-th
entry is one and the other entries are zero. By substituting (36)
into (34), the optimal MI increment f (viP}, WP}) can be
expressed by

F (v W)

Ngr
P (0} (o}
= 10g2 det (INR,F + ? Z )‘t,nDTpt,nR (Wtitl)anR,b”IjR,Wtitl>

’I’LR:1

P
= 10g2 det (INRF + ?dlag ()\tfﬂ%pt,noRl?;v e 7>\t,n%pt noPt )>

7R, NRF
Nrr PX, opt ot
= log, [ 14+ ——5—5 ), (37)
o
k=1
which only relies on the eigenvalues of ¥;. In this context, the
Nrrp

problem becomes finding n and {ng;},5] that maximize
f (Vit1, Wiyp1), as formulated in (17). This completes the
proof.
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