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APPENDIX A
PROOF OF LEMMA 1

Given the channel model in (4) and h ≡ vec (H), the
vectorized channel can be rewritten as

h =

√
NTNR

CR

C∑
c=1

R∑
r=1

gc,rb
∗ (ϕc,r)⊗ a (θc,r). (21)

Utilizing the commutative law of Kronecker product
(A⊗B) (C⊗D) = (AC)⊗ (BD), we have

(b∗ (ϕc,r)⊗ a (θc,r))
(
bT (ϕc,r)⊗ aH (θc,r)

)
=(

b∗ (ϕc,r)bT (ϕc,r)
)
⊗
(
a (θc,r)aH (θc,r)

)
. (22)

Then, the covariance of channel h can be derived as
(23), where (a) holds since the gains of different
rays {gc,r}C,Rc=1,r=1 are i.i.d. with zero mean and nor-
malized power. (b) holds according to (22). (c) holds
since E

(
a (θc,r)aH (θc,r)

)
= E

(
a (θc′,r′)aH (θc′,r′)

)
and

E
(
b∗ (ϕc,r)bT (ϕc,r)

)
= E

(
b∗ (ϕc′,r′)bT (ϕc′,r′)

)
hold for

any c, c′ ∈ {1, · · · , C} and r, r′ ∈ {1, · · · , R}. (d) holds by
defining

ΣT = NTE
(
b∗ (ϕc,r)bT (ϕc,r)

)
, (25)

ΣR = NRE
(
a (θc,r)aH (θc,r)

)
, (26)

wherein c and r can be arbitrarily selected from {1, · · · , C}
and {1, · · · , R}, respectively. One can find that, the matrix ΣT

only depends on the steering vector b (ϕ) at the transmitter,
while the matrix ΣR is only associated with the steering vector

a (θ) at the receiver. Thus, ΣT and ΣR can be viewed as the
kernels that characterize the correlation among the transmitter
antennas and that among the receiver antennas, respectively.
This completes the proof.

APPENDIX B
PROOF OF LEMMA 2

Using some matrix techniques, the MI I(y;h)
can be rewritten as equation (24), where (a) holds
since det (I + AB) = det (I + BA) and Ξ =
σ2blkdiag

(
WH

1 W1, · · · ,WH
QWQ

)
; (b) holds according to

the property that (a⊗B)C
(
aH ⊗D

)
=
(
aaH

)
⊗ (BCD)

if all dimensions meet the requirements of matrix
multiplications. To find more insights, we perform singular
value decomposition (SVD) on all {Wq}Qq=1 and then
substitute all decomposition formulas Wq = ΠqΩqΥ

H
q into

(24). It is evident that Wq

(
WH

q Wq

)−1
WH

q = ΠqΠ
H
q , thus

the MI I(y;h) can be rewritten as

I(y;h) =

log2 det

(
INRNT

+
1

σ2

Q∑
q=1

((
v∗qv

T
q

)
⊗
(
ΠqΠ

H
q

))
Σh

)
.

(27)

Observing (27), one can find that the MI I(y;h) in (7) only
relies on the orthogonal matrix Πq ∈ CN×NRF decomposed
from Wq for all q ∈ {1, · · · , Q}, while it does not depend
on any Ωq or Υq . It indicates that imposing Wq = Πq does

Σh = E
(
hhH

) (a)
=

NTNR

CR

C∑
c=1

R∑
r=1

E
(
(b∗ (ϕc,r)⊗ a (θc,r))

(
bT (ϕc,r)⊗ aH (θc,r)

))
(b)
=
NTNR

CR

C∑
c=1

R∑
r=1

E
(
b∗ (ϕc,r)bT (ϕc,r)

)
⊗ E

(
a (θc,r)aH (θc,r)

)
(c)
= NTNRE

(
b∗ (ϕc,r)bT (ϕc,r)

)
⊗ E

(
a (θc,r)aH (θc,r)

) (d)
= ΣT ⊗ΣR. (23)

I(y;h)
(a)
= log2 det

(
INRNT

+

1

σ2

[
v∗1 ⊗W1, · · · ,v∗Q ⊗WQ

]
blkdiag

((
WH

1 W1

)−1
, · · · ,

(
WH

QWQ

)−1) [
v∗1 ⊗W1, · · · ,v∗Q ⊗WQ

]H
Σh

)
(b)
= log2 det

(
INRNT +

1

σ2

Q∑
q=1

((
v∗qv

T
q

)
⊗
(
Wq

(
WH

q Wq

)−1
WH

q

))
Σh

)
. (24)
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not change the value of I(y;h). As a result, the orthogonality
constraint WH

q Wq = ΠH
q Πq = IRF can be safely introduced

into the problem formulation regarding I(y;h), which com-
pletes the proof.

APPENDIX C
PROOF OF MI INCREMENT I(ȳt+1;h)− I(ȳt;h)

Using some matrix partition operations, the MI I(ȳt+1;h)
can be rewritten as

I(ȳt+1;h)
(a)
= log2 det

(
INRFQ +

1

σ2
X̄H
t+1ΣhX̄t+1

)
= log2 det

[
INRFt+

1
σ2 X̄H

t ΣhX̄t
1
σ2 X̄H

t ΣhXt+1
1
σ2 XH

t+1ΣhX̄t INRF
+ 1
σ2 XH

t+1ΣhXt+1

]
(b)
= log2 det

[
INRFt+

1
σ2 X̄H

t ΣhX̄t
1
σ2 X̄H

t ΣhXt+1

0NRF×NRFt INRF+
1
σ2 XH

t+1ΣtXt+1

]
= I(ȳt;h) + log2 det

(
INRF

+
1

σ2
XH
t+1ΣhXt+1

)
, (28)

where (a) holds since according to Lemma 2 and (b) holds
by performing matrix triangularization. In particular, Σt is
given by Σt = Σh−ΣhX̄t

(
X̄H
t ΣhX̄t + σ2INRFt

)−1
X̄H
t Σh,

which completes the proof.

APPENDIX D
PROOF OF LEMMA 3

The key idea of the proof is to rewrite the X̄t-related terms
in (10) as ΣhX̄t = Σh

[
X̄t−1,Xt

]
and

X̄H
t ΣhX̄t =

[
X̄H
t−1ΣhX̄t−1 X̄H

t−1ΣhXt

XH
t ΣhX̄t−1 XH

t ΣhXt

]
. (30)

Then, using the Schur’s matrix inversion formula to expand
the term

(
X̄H
t ΣhX̄t + σ2INRFt

)−1
in (10), the following

recursion formula of can be obtained:

Σt+1 = Σt −ΣtXt+1

(
XH
t+1ΣtXt+1 + σ2INRF

)−1
XH
t+1Σt,

(31)

When Xt+1 =
√
PUt (:, [1, · · · , NRF]), we have

ΣtXt+1 = Xt+1diag (λ1 (Σt) , · · · , λNRF
(Σt)) and

XH
t+1ΣtXt+1 = Pdiag (λ1 (Σt) , · · · , λNRF

(Σt)). Thus, the
following equality holds:

Σt+1 =UtΛtU
H
t −Xt+1diag

(
λ21 (Σt)

Pλ1 (Σt) + σ2
, · · · ,

λ2NRF
(Σt)

PλNRF
(Σt) + σ2

)
XH
t+1. (32)

Given that Xt+1diag(
λ2
1(Σt)

Pλ1(Σt)+σ2 , · · · ,
λ2
NRF

(Σt)

PλNRF
(Σt)+σ2 )X

H
t+1 =

Utdiag(
Pλ2

1(Σt)
Pλ1(Σt)+σ2 , · · · ,

Pλ2
NRF

(Σt)

PλNRF
(Σt)+σ2 , 0, · · · , 0︸ ︷︷ ︸

NRNT−NRF

)UH
t and

Σt = UtΛtU
H
t , the equality in (13) can be derived from

(32), which completes the proof.

APPENDIX E
PROOF OF COROLLARY 1

According to Lemma 1 and equality
(
ABAH

)
⊗(

CDCH
)
= (A⊗C) (B⊗D)

(
AH ⊗CH

)
, the kernel Σh

can be decomposed as

Σh =
(
UTΛTUT

H
)
⊗
(
UTΛTUT

H
)

=(UT ⊗UR)︸ ︷︷ ︸
U0

(ΛT ⊗ΛR)︸ ︷︷ ︸
Eigenvalue matrix

(
UH

T ⊗UH
R

)

=

NT∑
nT=1

NR∑
nR=1

αnTβnR (anT ⊗ bnR)
(
aHnT
⊗ bHnR

)
, (33)

Based on (33), one can verify without difficulty that (14) is
exactly the eigenvalue decomposition of Σh, which completes
the proof.

APPENDIX F
PROOF OF LEMMA 4

Given the new constraints vt+1 ∈
{√

Pa∗nT

}NT

nT=1
and

wt+1,k ∈ {bnR}
NR

nR=1 for all k ∈ {1, · · · , NRF}, problem
(12) can be reorganized as

max
vt+1,Wt+1

f (vt+1,Wt+1)

s.t. vt+1 ∈
{√

Pa∗nT

}NT

nT=1
,

wt+1,k ∈ {bnR}
NR

nR=1 ,∀k ∈ {1, · · · , NRF},
wt+1,k 6= wt+1,k′ ,∀k 6= k′, (34)

where the objective function is given in (29), in which (a)
holds according to the definition in (15) and (b) holds by
utilizing the property to the property that (A⊗B) (C⊗D) =
(AC) ⊗ (BD). Note that, the constraint wt+1,k 6= wt+1,k′

for all k 6= k′ in (34) ensures the orthogonality of Wt+1.
Observing (34), one can find that our goal becomes finding
optimal indexes nT and {nR,k}NRF

k=1 that maximize the MI
increment f (vt+1,Wt+1). Assuming that the optimal indexes
are expressed by noptT and {noptR,k}

NRF

k=1 , the optimal precoder
and the optimal combiner are

vopt
t+1 =

√
Pa∗

nopt
T

and Wopt
t+1 =

[
bnopt

R,1
, · · · ,bnopt

R,NRF

]
,

(35)

f (vt+1,Wt+1)
(a)
= log2 det

(
INRF

+
1

σ2

NT∑
nT=1

NR∑
nR=1

λt,nT,nR

(
vTt+1 ⊗WH

t+1

)
(anT

⊗ bnR
)
(
aHnT
⊗ bHnR

) (
v∗t+1 ⊗Wt+1

))
(b)
= log2 det

(
INRF

+
1

σ2

NT∑
nT=1

NR∑
nR=1

λt,nT,nR

∣∣aHnT
v∗t+1

∣∣2WH
t+1bnR

bHnR
Wt+1

)
(29)
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respectively. Then, we have

aHnT
(vopt
t+1)

∗ =

{√
P , nT = noptT

0, else
, (36a)

bHnR
Wopt

t+1 =

{
eTnR

, nR ∈ {noptR,k}
NRF

k=1

0TNRF
, else

, (36b)

where enR
denotes an NRF-dimensional vector whose nR-th

entry is one and the other entries are zero. By substituting (36)
into (34), the optimal MI increment f

(
vopt
t+1,W

opt
t+1

)
can be

expressed by

f
(
vopt
t+1,W

opt
t+1

)
= log2 det

(
INRF

+
P

σ2

NR∑
nR=1

λt,nopt
T ,nR

(Wopt
t+1)

HbnR
bHnR

Wopt
t+1

)

= log2 det

(
INRF +

P

σ2
diag

(
λt,nopt

T ,nopt
R,1
, · · · , λt,nopt

T ,nopt
R,NRF

))
=

NRF∑
k=1

log2

(
1 +

Pλt,nopt
T ,nopt

R,k

σ2

)
, (37)

which only relies on the eigenvalues of Σt. In this context, the
problem becomes finding nT and {nR,k}NRF

k=1 that maximize
f (vt+1,Wt+1), as formulated in (17). This completes the
proof.
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